
2020-11-14

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math. LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Introduction
to linked lists

2
Issues with arrays

Outline

• In this lesson, we will:

– Describe the idea of a linked list

– Describe a simple variation of a linked list that you can implement

– Add values to this linked list

– Consider some issues and benefits of linked lists

3
Issues with arrays

Nodes

• Suppose I want to remember some numbers

– I could use this class

4
Issues with arrays

Nodes

• Each student is remembering two pieces of information:

– A number

– The next student

• This sound like a class, and we will call this class a node:

class Node {

public:

double value_;

??? next_;

};

1 2

3 4

2020-11-14

2

5
Issues with arrays

Nodes

• Let assume we have an array of these nodes,
thus, we could identify each node with an index

class Node {

public:

double value_;

std::size_t next_index_;

};

• Thus, we could have the nodes as follows:
std::size_t const list_cap{10};

Node a_nodes[list_cap]{};

for (std::size_t k{0}; k < list_cap; ++k) {

a_nodes[k].next_index_ = list_cap + 1; // indicates not used

}

• All the program need do is remember the first index

– The head of the linked list
std::size_t list_head{ list_cap };

6
Issues with arrays

Nodes

• Thus, we have:

int main() {

std::size_t const list_cap{10};

Node a_nodes[list_cap]{};

for (std::size_t k{0}; k < list_cap; ++k) {

a_nodes[k].next_index_ = list_cap + 1;

}

std::size_t list_head{ list_cap };

// Let us use this linked list

return 0;

}

7
Issues with arrays

Nodes

• Without coding, let’s see what we’d like to do:

– Here is our initial set-up:

0 1 2 3 4 5 6 7 8 9

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11 11 11 11 11 11 11 11 11 11

value_

next_index_

10 list_head

8
Issues with arrays

Nodes

• Without coding, let’s see what we’d like to do:

– To add 4.2, we

• Find an unused node

• Set the value and its next index to 10 to indicate it is the last node

• Remember that index

0 1 2 3 4 5 6 7 8 9

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

11 11 11 11 11 11 11 11 11 11

10 list_head5

4.2

10

value_

next_index_

5 6

7 8

2020-11-14

3

9
Issues with arrays

Nodes

• Without coding, let’s see what we’d like to do:

– To add 9.1, we

• Find an unused node

• Set the value and its next index to 5

• Remember that index

0 1 2 3 4 5 6 7 8 9

0.0 0.0 0.0 0.0 0.0 4.2 0.0 0.0 0.0 0.0

11 11 11 11 11 10 11 11 11 11

5 list_head2

9.1

5

value_

next_index_

10
Issues with arrays

Nodes

• Without coding, let’s see what we’d like to do:

– To add 6.3, we

• Find an unused node

• Set the value and its next index to 2

• Remember that index

0 1 2 3 4 5 6 7 8 9

0.0 0.0 9.1 0.0 0.0 4.2 0.0 0.0 0.0 0.0

11 11 5 11 11 10 11 11 11 11

2 list_head7

6.3

2

value_

next_index_

11
Issues with arrays

Nodes

• We can see why this is called a linked list

0 1 2 3 4 5 6 7 8 9

0.0 0.0 9.1 0.0 0.0 4.2 0.0 6.2 0.0 0.0

11 11 5 11 11 10 11 2 11 11

7 list_head

value_

next_index_

12
Issues with arrays

Nodes

• Could we program a walk through this linked list?
std::size_t index{ list_head };

while (index != list_cap) {

std::cout << a_nodes[index].value_ << std::endl;

index = a_nodes[index].next_index_;

}

0 1 2 3 4 5 6 7 8 9

0.0 0.0 9.1 0.0 0.0 4.2 0.0 6.2 0.0 0.0

11 11 5 11 11 10 11 2 11 11

7 list_head

value_

next_index_

9 10

11 12

2020-11-14

4

13
Issues with arrays

Nodes

• In fact, this could be a for loop:

for (std::size_t index{ list_head }; index != list_cap;

index = a_nodes[index].next_index_) {

std::cout << a_nodes[index].value_ << std::endl;

}

0 1 2 3 4 5 6 7 8 9

0.0 0.0 9.1 0.0 0.0 4.2 0.0 6.2 0.0 0.0

11 11 5 11 11 10 11 2 11 11

7 list_head

value_

next_index_

14
Issues with arrays

Questions

• How would you do the following?

– Add a node to the end of the linked list, not the start

– Remove the first node from the linked list

• This assumes there is at least one node in that linked list

– Remove the last node from the linked list

• What happens if there is only one node in the linked list?

– Remove an arbitrary node in the linked list?

– What would you do to a removed node to ensure it can be reused?

15
Issues with arrays

Question

• What happens if we accidentally execute the following?

if (list_head = 0) {

std::cout << "We are at the array[0]" << std::endl;

}

0 1 2 3 4 5 6 7 8 9

0.0 0.0 9.1 0.0 0.0 4.2 0.0 6.2 0.0 0.0

11 11 5 11 11 10 11 2 11 11

7 list_head

value_

next_index_

0

16
Issues with arrays

Issue

• Once again, we are restricted to the capacity of our array

– Would it not be better to get each node from the operating system?

– Benefit: as long as there is memory available,
we can continue to build our linked list

– Drawback: asking for new memory is actually sort-of slow… 

13 14

15 16

2020-11-14

5

17
Issues with arrays

Summary

• Following this lesson, you now

– Understand the idea of a node within a linked list

– Know that it is only necessary to store the first index

– Know that each node stores the index of the next node

– Understand how you can add additional nodes to this linked list

– Have a few questions to work out before your next lecture

– Know that there are problems with the current design

18
Issues with arrays

References

[1] https://en.wikipedia.org/wiki/Linked_list

[2] https://en.wikipedia.org/wiki/Node_(computer_science)

19
Issues with arrays

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

20
Issues with arrays

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

17 18

19 20

